A systematic study of metal-supported boron nitride materials for the oxygen reduction reaction.

نویسندگان

  • Ralph Koitz
  • Jens K Nørskov
  • Felix Studt
چکیده

Surfaces that efficiently catalyse the oxygen reduction reaction (ORR) are highly desirable for applications in energy utilization. Here, we computationally investigate the ORR on hexagonal boron nitride (h-BN) supported on Ni, Cu, and Co. We find a significant influence of the metal on the reaction energetics. In particular, h-BN/Cu is predicted to catalyse the ORR with a low overpotential, while on the other substrates the reaction is impeded by the formation of too stable surface hydroxyl species. Our results highlight trends in the reactivity of these heterostructures and may guide further rational design of O2-activating catalysts based on supported h-BN.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Determination of thermodynamic parameters of produced materials from (ATTZ) with boron nitride nano-cages in different conditions of temperature, with DFT method

6-Amino-1,2,4-triazolo[4,3-b][1,2,4,5]tetrazine (ATTz)is an explosive material, that has been synthesized from the reaction of 3,6-diaminotetrazine , with nitrous acid and then sodium azide. In the simplest terms, an explosive is defined as a substance, which on initiation by friction, impact, shock, spark, flame, heating, or any simple application of an energy pulse, undergoes a rapid chemical...

متن کامل

Investigating the Effects of Molecular Oxygen Impurity on the Quadrupole Coupling Constants of Boron Nitride Nanotubes: Computational Studies

Density functional theory (DFT) calculations have been performed to investigating the effects of themolecular oxygen impurity on the quadrupole coupling constant (Qcc) parameters of armchair and zigzagboron nitride nanotubes (BNNTs). Optimization processes have been performed to relax the original andimpure structures of the investigated BNNTs. Afterwards, the Qcc parameters have been evaluated...

متن کامل

Evaluating the Thermodynamic Parameters the Derivative [b-5,1] tetrazolo [4,2,1] teriazine (TTA) with Boron nitride nano-cage in Different Temperature Conditions by DFT Method

In thisresearch, the formed reaction derivative of matter [b-5,1] Tetrazolo [4,2,1] Teriazine (TTA) with boron nitride cage Nano-structure was studied in different temperature conditions by DFT method. For this purpose, first, the materials on both sides of the reaction were the geometric optimization, then, calculation related to the thermodynamic parameters were done on all them. Then, the va...

متن کامل

Performance comparison of graphene and graphene oxide-supported palladium nanoparticles as a highly efficient catalyst in oxygen reduction

In this work, the performance of graphene nanosheets (GNs) and graphene oxide (GO) nanosheets, as a support for palladium nanoparticles (PdNPs) toward oxygen reduction reaction (ORR), was studied. The graphene nanosheets were functionalized by a new and simple method. The PdNPs were synthesized on a glassy carbon electrode (GCE) modified with GNs or GO via a potentiostatic method; without using...

متن کامل

Study of 5-Picrylamino-1,2,3,4-tetrazole(PAT) with nanostructures of fullerene and boron nitride nano-cages in different conditions of temperature, using density functional theory

High Energy Materials is a term that is used for explosives, propellants and pyrotechnics. Explosives are used for military applications. 5-Picrylamino-1,2,3,4-tetrazole(PAT) is an explosive substance. In this study the reactions of the 5-Picrylamino-1,2,3,4-tetrazole(PAT) with nanostructures of fullerene and boron nitride nano-cages in different conditions of temperature, with density function...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 17 19  شماره 

صفحات  -

تاریخ انتشار 2015